The polarized total internal reflection fluorescence microscopy (polTIRFM) twirling filament assay.
نویسندگان
چکیده
Polarized total internal reflection fluorescence microscopy (polTIRFM) can be used to detect the spatial orientation and rotational dynamics of single molecules. polTIRFM determines the three-dimensional angular orientation and the extent of wobble of a fluorescent probe bound to the macromolecule of interest. This protocol describes the twirling filament assay, so named because actin sometimes twirls about its own axis as it is translocated by myosin. A gliding filament assay is constructed in which a sparsely labeled actin filament (0.3% of the actin monomers contain 6'- iodoacetamidotetramethylrhodamine [IATR]) is translocated by a field of unlabeled myosin V fixed to the surface. The polTIRFM twirling assay differs from a standard gliding filament assay in that full filaments are not visible, but rather individual fluorophores are spaced along each filament. The goal is to investigate possible rotational motions of the actin filament about its axis (i.e., twirling) by measuring the spatial angle of the fluorescent probe as a function of time. Successful assays contain microscopic fields of approximately 50 isolated points of fluorescence that move across the field in the presence of ATP. Actin is usually translocated by more than one myosin molecule, depending on the filament length and the myosin surface density. Sparsely labeled filaments are required because the orientation of only one probe can be resolved at a time.
منابع مشابه
Twirling of actin by myosins II and V observed via polarized TIRF in a modified gliding assay.
The force generated between actin and myosin acts predominantly along the direction of the actin filament, resulting in relative sliding of the thick and thin filaments in muscle or transport of myosin cargos along actin tracks. Previous studies have also detected lateral forces or torques that are generated between actin and myosin, but the origin and biological role of these sideways forces i...
متن کاملFluorescent labeling of calmodulin with bifunctional rhodamine.
Polarized total internal reflection fluorescence microscopy (polTIRFM) can be used to detect the spatial orientation and rotational dynamics of single molecules. polTIRFM determines the three-dimensional angular orientation and the extent of wobble of a fluorescent probe bound to the macromolecule of interest. This protocol describes how to label chicken calmodulin (CaM) with bifunctional rhoda...
متن کاملA Thin Layer Imaging with the Total Internal Reflection Fluorescence Microscopy
Total internal reflection fluorescence microscopy (TIRFM) is an optical technique that allows imaging of a thin layer of the sample with a thickness of about 100-200 nm. It is used in science of cell biology to study cellular processes, especially near the membranes of living cells. This method is based on the total internal reflection phenomenon, where the evanescent wave is generated in the l...
متن کاملReal-time measurements of actin filament polymerization by total internal reflection fluorescence microscopy.
Understanding the mechanism of actin polymerization and its regulation by associated proteins requires an assay to monitor polymerization dynamics and filament topology simultaneously. The only assay meeting these criteria is total internal reflection fluorescence microscopy (Amann and Pollard, 2001; Fujiwara et al., 2002). The fluorescence signal is fourfold stronger with actin labeled on Cys-...
متن کاملDirect real-time observation of actin filament branching mediated by Arp2/3 complex using total internal reflection fluorescence microscopy.
Existing methods for studying actin filament dynamics have allowed analysis only of bulk samples or individual filaments after treatment with the drug phalloidin, which perturbs filament dynamics. Total internal reflection fluorescence microscopy with rhodamine-labeled actin allowed us to observe polymerization in real time, without phalloidin. Direct measurements of filament growth confirmed t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cold Spring Harbor protocols
دوره 2012 6 شماره
صفحات -
تاریخ انتشار 2012